Software
Engineering

System Modeling

Todsapon Banklongsi

Department of Computer Engineering
Bangkok University

System Modeling

+ System modeling is the process of developing abstract
models of a system, with each model presenting a
different view or perspective of that system

+ System modeling has now come to mean representing a
system using some kind of graphical notation, which is
now almost always based on notations in the Unified
Modeling Language (UML)

+ System modeling helps the analyst to understand the
functionality of the system and models are used to
communicate with customers

Existing and planned system models

Models of the existing system are used during requirements
engineering. They help clarify what the existing system
does and can be used as a basis for discussing its strengths
and weaknesses. These then lead to requirements for the
new system.

Models of the new system are used during requirements
engineering to help explain the proposed requirements to
other system stakeholders. Engineers use these models to
discuss design proposals and to document the system for
implementation.

In a model-driven engineering process, it is possible to
generate a complete or partial system implementation from

the system model.

Software Modeling

U.ser' j‘> Modeling
Requirement (Analysis and Design)

Modeling
- Analysis and Design
- Visual Modeling Model

Specification)

Manually
Coding

Software Development Process

+ Requirement Specification : define problem domain

» Analysis : what problem to be solved?
» Design : how to solve the problem?
 Implementation : how to implement the solution?

+ Testing : how to ensure that the solution can solve the
problem?

* Maintenance : how to adjust the solution to accomodate
change?

* Retirement : when does the system to be retired?

Software modeling and models

Software modeling helps the engineer to
understand the functionality of the system

Models are used for communication among
stakeholders

Different models present the system from
different perspectives

- External perspective showing the system’'s context or
environment

- Process models showing the system development process
as well as activities supported by the system

- Behavioural perspective showing the behaviour of the
system

- Structural perspective showing the system or data
architecture

System Model

Control Power Wehicle
El =3 o o

=

Cost

http://www.omgsysml.org/INCOSE-OMGSysML-Tutorial-Final-090901.pdf

System perspectives

An external perspective, where you model the context
or environment of the system

An interaction perspective, where you model the
inferactions between a system and its environment, or
between the components of a system.

A structural perspective, where you model the
organization of a system or the structure of the data
that is processed by the system

A behavioral perspective, where you model the dynamic
behavior of the system and how it responds to events

Product Engineering Hierarchy

Product Requirements Engineering

System
Human Hardware Software Database CZmponem‘
Engineering| [Engineering | |Engineering| |Engineering Engineering
! Function LK Behavior ! Analys,'s
| Classes . Modeling
Data/Class Architectural Interface Component ! Design
Design Design Design Design ' Modeling

Analysis Modeling

The Analysis Model is the first technical representation of a system.
Analysis modeling uses a combination of ftext and diagrams fo represent
software requirements (data, function, and behavior) in an understandable
way.

System
Description

Analysis
Model

10

The Analysis Model

The analysis model consists of a wide variety of
diagrammatic forms used to bridge an important gap.

. ; T..: ’ﬂ| e \ = System information
[System | Al (= ﬂﬂﬁ Design Svstem functi
Description Model = >ystem iunction
\ / Analysm \ / m System behaviors
Mu
Purpose:
m Describe what the customer wants built

m Establish the foundation for the software design
m Provide a set of validation requirements

—\.

11

Analysis Modeling Approaches

Structured Analysis: Obiject-Oriented Analysis

m Models data elements m Models analysis classes
Attributes Data
Relationships Processes

m Models processes that m Models class collaborations

transform data
e _] _
‘\/'

&

Techniques from both approaches are typically used In
practice.

12

Types of Analysis Model

1. Structural Analysis or
Non-UML System Modeling Methods

O Process Model (process-driven systems)
- Data Flow Diagram (DFD)

- Flowcharts

- Structure Charts

- Decision Table, Decision Tree

O Data Model (data-driven systems)

- Entity Relationship Diagram
(ER Diagram)

- Data Dictionary

- Warneir Diagram

d Control-Oriented Methods (real-time
systems)

- State Transition Diagrams (STD)

2. Object Oriented Analysis or
UML System Modeling Methods

d Structural Diagram
- Class Diagram

- Object Diagram

- Component Diagram

- Deployment Diagram

O Behavioral Diagram
- Use Case Diagram
Sequence Diagram
Activity Diagram
Collaboration Diagram
State Diagram

13

Structural Analysis

Structured analysis: the focus is only on process and procedures.
Modeling techniques used in it are DFD(Data Flow Diagram),
Flowcharts etc.

Structuring system process requirements
- Data flow diagrams (DFD) - process modeling
- Context diagram

- Process decomposition (DFD levels): 4 types of DFD:
» Current physical: adequate detail only
* Current logical: enables analysts to understand current system

* New logical: technology independent, show data flows, structure, and
functional requirements of new system.

 New physical: technology dependent.
Logical modeling: using structured English, decision table/tree
- Structuring system data requirements: using ER diagram

14

Data Flow Diagram : DFD

Data Flow Diagrams

Structured Analysis: Modeling Tools:
m Models. data elements J_' Data object diagrams
= Attributes - — | = ERD diagrams
0 Relationships modeled -
using 3
= Models processes that | = Data flow diagram
transform data } m Process narrative
- modeled -
using

A data flow diagram describes information flow among a
set of processes and actors.

11
A process narrative describes how a single process

transforms input data to output data.

15

Data Flow Diagram : DFD

1. Process

C

Ok SOMETIMES A clgcLE

identifier —» 1

Manager «— |

_———location

I

Calculate V,i;T
\

This might be a
physical location or
the staff
responsible.

.

~___ Name of the

process

PROCESS
AcCTIVE VERR CREDIT CARD
= NAME DIRECT OBTECT B o
|3 | SeLL
Process P
o i ~ CHECK
» C ITEM PRICE

Data Flow Diagram : DFD

MName qf the flow

2. Data Flow N

Order Details .
> NOVN 1\
Data Flow “~— Direction of
NAME . _ the flow
Ii
NVOICE >
CREDIT CARD

AUTHORIZATION

Data Flow Diagram : DFD

a ‘D’ used to represent a
identifier computer data

! a ‘M’ used to represent manual

3 o Da*a S?or'e 1.,_"1. data stores

Ny | T B |- - PP TP—— e .
TDI | © derEd?bcmks DI]I Ordered books
I 1
a’llr;
Name of the A duplicated data store
data store

OR SOMETIMES Z LINES
Data Store

T NEED YOV!

18

Data Flow Diagram : DFD

4. External Entity

External Entity

= =
External Entit
'l‘ﬂdl{ltd
Praject Charter and Define User Business Requirements M Product
- !
Business Requirements BAGUSRIMERS Stakeholder Requirements Backlog
N i

g , i

Qualified Business Analyst

19

Data Flow Diagram : DFD

Diagram Layering and Process Refinement

v an i \‘O —» /{3 Context-level diagram
(DFD Level 0)

// \\
, ¢)' > {—3 DFD Level 1 diagram
aO*O*/ L %@
’ III III
1 1

{— DFD Level 2 diagram

UU L DD

Process Specification 20

Bax represenr: prace:

Context Diagram (DFD Level O)

DFD Context Diagram - Example Food Ordering System

Customer

T Customer Orde
>

Ol 1@
b)
P

| Food Ordering
System

Kitchen

Food Order ﬁ

Receipt

- J

¢ Reports

Restaurant
Manager

Highest level view of the
system

Contains ONLY one process,
i.e., the "system”

It also shows all external
data sources/sinks
(“electronic” or "manual”)
And all data flows between
data sources/sinks and the
process

It contains NO data stores

21

DFD Level 1

DFD Level 1 Diagram - Food Ordering System

| L — « Expands the main
Customer Bustomer Order I process from
| | context diagram
ﬁ\ oo ! | : * Represents the
| oytems majr
) I I« Which are the
Ps | primary individual
Upggfg SilondS Goods Sold nventory bata > Invgr?t?)?;eFile I processes at the
: highest possible
: level
Formatted Goods Sold Data Formatted Inventory Data | e This is called
D | Goods Sold File Daily Goods Sold Amounts D1[Inventory File l \\func.‘.ional
e e e = = - 1 : decomposition”
Restaurant Produce
W Manager (vlanagemenl Reports Mag:ggrtn;ent I
l Daily Inventory Depletion Amts l
l l

DFD Level 2 Diagram (DFD Level 1 of P1)- Food Ordering System

DFD Level 2
(DFD Level 1 of Process 1)

l-______________-l

Custon‘er Order 1

T 11) T i)
P1.1 Customer Order 5 P1.5 I P3
Customer I Receive > Generate Update
| >\ Customer Ordef Inventory Decr| NVentory Data | entory File
Custorper Order 2 I
—_ —_
I_ iece|_pt — — | Customer er 4 Customer Order 3 I
I P1.2 P1.4 P1.3 I
I Generate Generate Transform Food Order | Kitchen
Customer Goods Sold Order to
e [|
| Receipt Incr Kitchen Fmt —=>>
I - - |
P2
Update Goods
Sold File
—_

23

Entity Relationship Diagram (ERD)

cuztomer-no

An entity-relationship diagram (ERD) is a graphical representation of an
information system that shows the relationship between people, objects,
places, concepts or events within that system. An ERD is a data modeling
technique that can help define business processes and can be used as the
foundation for a relational database.

Entity-Relationship Diagrams Database Structure Diagrams
Customer
order-no 1 custio
’ M narne
Customer Crder email
i Order i _ |includes
orderfo orderMo . 1 Product
— * Lcustio productio productio
- orderDate unitPrice prodMame
includes handlingCost quantity listPrice
y

24

Entity Relationship Diagram (ERD)

FIGURE 4.21 A COMPARISON OF ER MODELING SYMBOLS

Chen Crow’s Foot Rein85 IDEF1X

Entity

Relationship line

Relationship
Option symbol

One (1) symbol

Many (M) symbol

Composite entity

Weak entity

- -0

Entity Relationship Diagram (ERD)

Chen ERD o
Participations Recursive Relation ship
Cardinality can be shown orhidden Cardinality can be shown or hidden
Entity Entity Attribute Mandatory
1 1
(0:1) 0:1)
1 1 1 1
(L:1) (1:1)
Weak Entity Weak Entity Key attribute
N N
(0:N) (0:N)
1 N 1 N
(L:N) (L:N)
Relationship Relationship Attribute Weak key attribute M M
{0:M) (0:p)
1 M 1 M
(1:M]) (1:M)
Relationship Identifying Relationship ': Attribute ‘,' Derived attribute Optional
T 1

1
. . e e e e e e e e e (1:1]
SSDCI?tIVE Associative Entity Multivalue attribute 1
Entity N

(0:N)

2 ¥ SR

Strong entity fenaiudisaueshi Weak entity feiulaverdis entity 1 (L:N)

g o . - - o

yuiventity lawuidndnnvie ennsd duwu insamas iunnnuilunansou vio L.

A a 9 & 9 A A9 v) Yy A 9 (0:m)
vsodud itudu Aanne 9 i lFaugudeyaszdeguneadae

' o & 1 M
U AU uEun Yszian msdade e (1M)

http://www.conceptdraw.com/How-To-Guide/picture/Design_Elements(Chen-ERD).png 26

Entity Relationship Diagram (ERD)

1:1= one to one
1:N = one to many
N:M = many to many

COUESE I

COLREZE_MAME

COURSE

27

Object Oriented Analysis

In the system analysis or object-oriented analysis phase of
software development, the system requirements are determined,
the classes are identified and the relationships among classes are
identified

A semiformal analysis technique for object-oriented paradigm
Structuring system process requirements

Q Structural Diagram 4 Behavioral Diagram
- Class Diagram - Use Case Diagram

- Object Diagram - Sequence Diagram

- Component Diagram - Collaboration Diagram
- Deployment Diagram - State Diagram

- Activity Diagram

28

The Unified Modeling Language

- Devised by the developers of object-oriented analysis and desigh methods
* Has become an effective standard for software modelling

UML Diagram Types

¥

Structural Diagrams

Composite
Structure Diagram

Deployment
Diagram

Package Profile Class
Diagram Diagram Diagrams

Object Component
Diagram Diagrams

¥

Behavioral Diagrams

State Machine Communication

Diagram Diagram
Use Case Activity Sequence
Diagram Diagram Diagram

Timing Interaction
Diagram Overview Diagram

design] Clreately com

UML -Structural Diagram

Class diagrams, which show the object classes in the system and the
associations between these classes.

Object diagrams is a graph of instances, including objects and data
values. A static object diagram is an instance of a class diagram; it shows
a snapshot of the detailed state of a system at a point in time. The use
of object diagrams is fairly limited, namely o show examples of data
structure.

Component diagrams illustrate the pieces of software, embedded
controllers, etc., that will make up a system. A component diagram has a
higher level of abstraction than a Class Diagram - usually a component is
implemented by one or more classes (or objects) at runtime. They are
building blocks so a component can eventually encompass a large portion
of a system.

Deployment diagrams depicts a static view of the run-time configuration
of processing nodes and the components that run on those nodes. In
other words, deployment diagrams show the hardware for your system,
the software that is installed on that hardware, and the middleware used
to connect the disparate machines to one another.

30

Class Diagrams

* Class diagrams are used when developing an object-
oriented system model to show the classes in a system
and the associations between these classes

An object class can be thought of as a general
definition of one kind of system object

An association is a link between classes that indicates
that there is some relationship between these classes.

When you are developing models during the early
stages of the software engineering process, objects
represent something in the real world, such as a
patient, a prescription, doctor, etc.

31

Class Diagram

What is a Class? uwaadassehangaiisvesszunludnvazanuduiussznisna

A class consists of a set of attributes and methods. A class
diagram is used to show the static structure of a class.

P —— Class name Class Name

e Attributes attribute: Type = mitialValue

operation)are ist)returm type

e mmmmmmmmmmn Methods

Each class is like a template that defines how instances of the
class — objects — should be created.

i =, &)
— —
classes < > objects
=) &=
o —

32

Class Diagram

Accessibility
Attributes and methods can be declared at three levels
of visibility.
class diagram
— m Public (+)«——"77" notation
. - Visible everywhere.-<~"~ .~
+ public - attribute e »
- private - attribute m Private (_)4
il i IEﬁZEIEE Visible only fromz,wﬂhin the declaring class
+ operation P

m Protected (#) *~

Visible only from within the declaring class
and any of its subclasses

We will all now swear never to declare public attributes.

Visibility

Use visibility markers to signify who can access the information contained within a class. Private visibility hides
information from anything outside the class partition. Public visibility allows all other classes to view the marked
information. Protected visibility allows child classes to access information they inherited from a parent class.

33

Class Diagram - Relationship

1) Unary Relationship duanuéiniug
NRANUAMNEIALY 1Y FIHITNHBIVR I NANHINAAZAYU

"

Student

-=<PRK>=stdld © String

-stdh ame ; string

-stdLMame : string

-stdAdd ; string

-stdBithdate : Date
-=<Multivalued=>> stdPhone ; String
-faculty : sftring

-major - string

-startDate : Date

Student

- PRe==stdld | String

-stdMame ; string

-stdLMame ; string

-stdAdd | string

-stdBirthdate @ Date
-==hultivalued==stdPhone : String
-faculty ; string

-major ; string

-startDate © Date

2) Binary Relationship i

v w dAa & v 1
ANUANNUTNNAVUISHINNAAIA 2 Aa1d YU

v . d v o o
ANUANNUTITHINAAT “UNANHYT” DU AT “AME

a R v v du v v U U
717 %Qﬁﬂwuﬁﬂuiﬂﬂﬂ?l]ﬂﬁﬂwuﬁ “aeana”

Faculty

-==PK==facld : String

Room

1 |fachame: string

3) Ternary Relcrrionship WAupnudniuiiifatusznhsamainnnh 2 anadily

Time

Subject

34

Class Diagram

- oL
TR association 1

Reqister Captures

+endSale

+enterltem(...)

+makePaymenty...)
ANATUBNAANI

Sale TaARA

-date

-time

+ makeLineltme(...)

-isComplete: Boolean } attributes

methods

visibility

+ LN public
- private
uni protected

35

Class Diagram

Class Diagram for Order Processing System

Customer Order
- CustomerlD : Int - Orderld : Int
- CustomerMame : String - Customerld : Int _
- Address : String - Customertlame : String
-Phone : Int —0.1 1.x— - Productid : Int
- Amount : Float
+ AddCustomer() - OrderDate : Datetime
+ EditCustomer()
+ DeleteCustomer() + CreateOrder();
+ EditOrder(int Crderld)
Stock Product
- Productid : Int - Productid : Int
- Quatity : Int - ProductPrice : Float
- ShopMo: Int o - ProductType : String
+ AddStock() +ﬂadd|f'rnduct[}
+ ModifyStock(Int Productld) + ModifyProduct()
+ SelectStockitem(Int Productid) + SelectProduct(int Productid)

http://creately.com/blog/diagrams/uml-diagram-types-examples/

36

Class Diagram -
Relations between Classes

d Association

J Aggregation

dComposition
QInheritance/Generalization

37

Class Diagram - Association

Association unudaduireuszrineaenand

Fuanuduriuiseninara A Tdwnara B vazenaaa B lddwmara A

m label

Class A

n

role A role B

Class B

m uaz N iy multiplicity number

label Wumeiuodunsisonlosznivaaia (Huye association szwivaesnaia)

*

1 WorkFor > 1
Person Compan
* WorkFor > 1
P C
erson employee employer ompany
customer

child
Person
parent 2
Student
ID: string study at»

firstName: string
lastName: string
gpa: double

Department

getName(): string
getGPA(): double

ID: string
Name: string

getCount()

38

Class Diagram - Multiplicity

Employee

. employed by*> 1

employees

employer

Company

public class Employee {
public Employee() { }

private string name;
private Company employer;

}

name=s;}

public class Company {
public Company(X };
public Company(stirng s){

private string name;
private Employee [] empoyeers;

Indicator | Meaning

0.1 Zero or one

1 One only

0.% Zero or more

1% One or more

n Only n (where n>1
0..n Zero to n (where n>1)
1..n Oneton wheren >1)

m Directed Association

doamsszyanuduius llneianaladananils Taoldgnes

*

Message
Queue

}

John:Person

Message

Queue wiisi szneudonaw Message
Queue #oannisjin Message ozl
ua Message lidesiin Queue miamld

:Contract

Company

JobTitle = “Lecturer

:Contract

JobTitle= “Engineer”

1 no move thaw one Company
0.1 zero or one 1

%y

&=
0..% zevo or many 1.

(e

1 =
= ONE OF Mty

(John shdmghauanuds 2 dyan daagusminludwmia “Lecturer”
o § o o " c " ar 6w A w a a 1)
dyandeshludumis “Engineer” uaas dyaneshiuus dmau nsousinlminld

39

Class Diagram - Aggregation

m Aggregation (“has-a” relationship) .

Object vosnara A 1357 Object vonaa B o ﬂimaaﬂﬂnmﬁﬁq
¥3o an Object of A has a object of B.

Aggregation foiufluaudniusuuuwiiives dependency
1 .

Mailbox K> 2 MessageQueue
queue
public class Mailbox { public class MessageQueue {
private MessageQueue[2] queue; private Message [5] msg;
}
(Horstmann,2004, p.48)
1 5
MessageQueue K> Message
msg
public class MessageQueue { public class Message{
private Message [5] msg; private String text:

}

MessageQueue uisq sounndvesnara Message 1ahinu b i

An aggregation model
shows how classes that
are collections are
composed of other classes

Aggregation models are
similar to the part-of
relationship in semantic
data models

40

Class Diagram - Composition

Composition is a strong form of association in which the 'part’ objects are
dependent on the ‘whole’ objects.
1. a'part’ object can only belong to one composite at a time,
2. when a composite object is destroyed, all its dependent part must be
destroyed at the same time .

1 .
Sale @ alesLineltem

lines Class A Class A

public class Sale { public class SalesLineltem{

private SalesLineltem[] lines;
} }

1 *
Polygon < Point
points

public class Polygon { public class Point{

private Point[] points;

} 'Erivate double x; Class B Class B

private double y;

}

41

Class Diagram -
Inheritance/Generalization

Supertype

T

Subiype 1 Subtype 2
Account
Deposit Account || CurrentAccount
Account
T
Deposit Account || CurrentAccount

S B

Student

Person

Lastname
Firstname
Birthdate
Gender

Department
Year
GPA

Enroll()
Study()
Exam()

Graduate()

public class Account {

private String id;

Walk()
Jump(}
Talk()
Sleep()
Eat()

1

Teacher

Paosition
Expertise

Lecture()

Comment()

private double balance;

Generalization is an everyday
technique that we use to
manage complexity

Rather than learn the detailed
characteristics of every entity
that we experience, we place
these entities in more general
classes (animals, cars, houses,
etc.) and learn the
characteristics of these
classes

This allows us to infer that
different members of these
classes have some common
characteristics, e.g. squirrels
and rats are rodents

public class DepositAccount extends Account{

42

Class Diagram - Generalization

i ludsdesns generalization

CurrentAccount

DepositAccount

 ¢)0074 holds > *
E
holds * *
Customer
1
1
holds * *

11Q!ﬁ1i.lﬂﬂmﬂﬁﬁ:
1. fiassociation wmiul

2. ugazama hildld data uaz methods sawuiu sivlinnlumssams (Account no,

Balance, deposit, withdraw)

OnlineAccount

In modeling systems, it is often useful to
examine the classes in a system to see if
there is scope for generalization. If
changes are proposed, then you do not
have to look at all classes in the system to
see if they are affected by the change.

In object-oriented languages, such as
Java, generalization is implemented using
the class inheritance mechanisms built
into the language

In a generalization, the attributes and
operations associated with higher-level
classes are also associated with the
lower-level classes

The lower-level classes are sub-classes
that inherit the attributes and operations
from their super-classes. These lower-
level classes then add more specific
attributes and operations.

43

Class Diagram -
Generalization and Specialization

Account Doctor
m Superclass 4
m Subclasses % | |
. Hospital General
DepositAccount || CurrentAccount Al practitioner
Superclass #io amaiiiluusinygpvesnaasu Fuaasdenniuainavesnarddu Zé
Tugl'ldun Account | |
Subclass duamaiiduneann Superclass uaasinsiimmzves Superclass Consultant Team doctor
Tupl1éun’ DepositAccount uaz CurrentAccount 4
The deposit account is a subclass of Account.
The current account is a subclass of Account. _| |
Trainee Qualified
doctor doctor

1 holds *
Customer Account
| T |
Deposit Account || CurrentAccount

Vv .
anm 1 audeiaydldvareind WaSmaniverndu 1iyd Deposit vie

o

Current a4

44

Class Diagram

‘<} - A inherit iu B

A = - B Generalize A

Dependency A Kl---- B | - AiluImplementB
Low jq - B gnImplement A

A € —---- B Biuon A (ﬁu@iaﬂ”uuazﬂ”uﬁaﬂﬁqﬂ)

A B A Associate B w350 B Associate A

B A iilu Aggregate B (A fludus B iilu
A ‘C ddes i1 A hisg B Aaunsnegldviie A ogld
= logical hudrvesudle meiog Taghidesd B)

A @— B A il Composition ves B (B azaglhi’ld
¥ = Physical fludwosiamanazle d1hill A)

High

45

Object Diagram

ObjCCT diagmms are also closely

linked to class diagrams. Just as an object is an

instance of a class, an object diagram could be viewed as an instance of a class diagram.
Object diagrams describe the static structure of a system at a particular time and they
are used to test the accuracy of class diagrams.

Q' LY v w d d
!!ﬁﬂﬁiﬂ5\1ﬁ%%‘l‘l"ig‘lﬂ‘l-!\1‘llf’)x‘ﬁ%ﬂ‘]ﬂ‘l—!ﬂﬂ‘]elﬂ!g’,ﬂ’ﬂ%lﬁﬂlwuﬁﬁg?‘i’hﬁﬂf’)ﬂlﬁﬂﬂ

Object names

Each object is represented as a rectangle, which contains
the name of the object and its class underlined and

separated by a colon.

Ohbject name : Class
Alamed object

: Class
Lhnarned object

Object attributes

As with classes, you can list object attributes ina
separate compartment. However, unlike classes, object
attributes must have values assigned to them.

Ohbject Name : Class

Attrnbute type = Value'
Attrnbute type = Value'
Attrnbute type = Value'

Object name : Class::Package

Lttnbute type = 'Value'

Mayned abjoect with path name

classes{ ’?V:\(’\l

Object with atfributes

S &
objects

—

—
= =3
W Q:_/-‘_-

46

Object Diagram

Active object
Objects that control action flow are called active objects. -
Illustrate these objects with a thicker border. Ohject name : Class
T Active object

Multiplicity /
You can illustrate multiple objects as one symbol if the | J
attributes of the individual objects are not important. Ohject name : Class

: Multinle objects
Links Heo

Links are lns‘rqnces of- assocuahgns. You can Self-linked
draw a link using the lines used in class

, Objects that fulfill more than one role can be self-
diagrams.

linked. For example, if Mark, an administrative
assistant, also fulfilled the role of a marketing

assistant, and the two positions are linked, Mark's
instance of the two classes will be self-linked.

N\

Object name : Class

Links

47

Object Diagram

TRAIN #1 : TRAIN

Train_ID =1
Train_type = “Express”
Max_speed = 190 kph

mv1 - TRAIN JOURNEY

Starling_from - Malvem
Terminaiing = Worcester
Joumey_time =25 min

get_frain_id() : 1 Integer
set_type ("Express” : Text)
In_service (True : Boolean)

wrbm - TRAIN JOURNEY

from - Warcestar
Terminaiing = Birmingham
Joumney_fime - 125 mins

Customer1:Customer

Customer_id = 0001
Customer_name= Jane Doe
Customer_phone = 112456789

Order1: Order

Order?: Order

Order3: Order

Crder_no = 0001
Order _amount = 500

Order_no = 0002
Order _amount = 478

Crder_no = 0003
Order _amount= 698

gramming & design] Cr"ea[e

48

Component Diagram

A component diagram could represent
- Logical Components (e.g., business components, process components), and
- Physical Components (e.g., CORBA components, ETB components, COM+ and .NET components,

WSDL components, etc.),

d d a d Y Y
!!ﬁ'ﬂ\‘i@\‘iﬂﬂi%ﬂﬂﬂﬁ%@ﬂﬂﬁ%iﬂﬂlﬂﬁi%‘ﬂ‘ﬂ (!‘l;‘lf!”l‘l"lﬁ exe llay dll)ﬁeaﬂgmm!ammuﬁaﬁu

Component

A component is a physical building block
of the system. It is represented as a

rectangle with tabs.

]
B
Component Component component

Port

Interface
An interface describes a group
of operations used or created

by components.

i

required interface interface

Ports are represented using a square
along the edge of the system or a
component. A port is often used to

g]

Component

=]

Component

help expose required and provided
interfaces of a component.

2] g]
Component -tD Compaonent

port

Dependencies
Draw dependencies among
components using dashed
arrows.

:l_—; Component
%,‘ :I__E otmponent

-—— Dependency

I:l_—'_l"j Component

49

Component Diagram

internal structure
[J(Jrﬂ[].‘i riment

usubsystem» WebStore

/ structured classifier — subsystem component \

2]

AN

-

internal structure

ProductSearch

£]

1 :SearchEngine

1

G

(A

provided
interface

OnlineShopping

e S

UserSession 2

delegation
connector

role, part component

g]
] :Shopping Cart L

1

+—(—-C

ball-and-socket

g]
—C

1 :Authentication C

|5

«subsystem» Warehouses

Search
Inventory

———>0—

internal structure

!Inventory

required
interface

wsubsystem» Accounting

Manage
Orders

G —>0—

dependency

assembly connector

Manage
Customers

-0

internal structure

1 O— :Orders

1

Manage itl\
Customers

E provided
nterface
Manage
2] Inventary
[(HHO—A1+—0=>
|
|
I
: dependency
2] i
|
|
Manage |
2] Inventory |
[J—C—E%— -=!
requirad
nterface

assembly connector
ball-and-socket

==

—0]

:Customers

]

provided
interface
UserSession
O—L
T

delegation connector

@ uml-diagrams.org

i
delegation connector

50

Deployment Diagram

Deploymen’r diagr'ams depict the physical resources in a system
including nodes, components, and connections. (Hardware and Software)

uaaamsindsunsunsanldaagduarsanslussuu

Component
A node is a physical resource that executes code components.

Association

Association refers to a physical connection between nodes,
such as Ethernet.

Components and Nodes
Place components inside the node that deploys them.

Mode Matne

Mode

Mode

Server

Componetit

Component

o1

Deployment Diagram

=2 << tionEnvi t>> <<component>> E
<<device>> executionenvironmen <<artifact>> E P m‘
— Name Node Artifact Name saliponentiiame
Device Node Processor Execution Environment Artifact Component Package
< <deployment spec>>
Component Specification 7
O —0O il
4
Component 2 User Interface Interface Data Store Deployment Frame, Note
Specification Fragment
—————————— > ——————————>
Dependency Communication Path Smart Connector
< O
Aggregation Communication Line Provided Interface
- O C
Composition Request Required Interface
{or} * Association * O
text text
Constraint Association Many-to-Many Provided Interface (reverse)
1 Association * ~
<I text text -
Generalization Association One-to-Many
‘_ e —

Realization

http://www.conceptdraw.com/How-To-Guide/picture/Design-elements-UML-deployment-diagrams.png

Line Connector

Required Interface (reverse)

52

Deployment Diagram

Lethe:Unix Server
<}— Node
Persistence Objecl
Service Dalabase
A T N Dependency
| e e e)
i
I
I
I Component
_______ 1 ..-:J
/ | A
1 /
Hermes AppServer: I :Browser
Wintel Server :
— - e Account
Account
Management
Management | _! i~

53

Deployment Diagram

deployment Book Club Web Application)

devica
device adevices Sun Fire X4150 Server /
NN

wJSP sarvers Tomeat 7 sdevicer Sun SPARC Server

L1 execution
aexeculionEnvironments environment wdatabase systems

N Catalina Serviet Container Oracle 10g
deployment \
Q

exacution specification _
wschemas
environment ﬁw adaployment spacs Users
=] web.xml wprotocols
wartifact» D < TCPIP
f_ﬁ_,_.,_-—-—-i* book_club_app.war Q
P «schemas
deployed L] T ~ samanifests f Orders
artifact < .
~ communication
\ Y £ .
®EOMpONEnts path
RN S OnlineOrders escheman L)
"“‘-q,,‘# agriifacts O o3 Inventory
user_services. jar a

a

web-tools-lib.jar /

S

deployed
artifact

http://www.uml-diagrams.org/deployment-diagrams-overview.html

UML -Behavioral Diagram

Use case diagrams, which show the interactions between a system
and its environment

Sequence diagrams, which show interactions between actors and
the system and between system components

Activity diagrams, which show the activities involved in a process
or in data processing

Collaboration Diagram or Communication Diagrams like UML
sequence diagrams, are used to explore the dynamic nature of
your software. Collaboration diagrams show the message flow
between objects in an OO application, and also imply the basic
associations (relationships) between classes.

State diagrams, which show how the system reacts to internal and
external events

55

Use Case Diagrams

+ Use Case Diagrams gives a graphic overview of the actors involved ina
system, different functions needed by those actors and how these
different functions are interacted.

- Use cases were developed originally to support requirements elicitation
and now are incorporated into the UML

+ Each use case represents a discrete task that involves external
interaction with an actor

- Actors in a use case may be people or other systems

W U

a Jd 1 d v o v
ﬂgauwuﬁizﬁ’na@%mﬂuammzﬁanwmﬁmammnmﬂimzuu

- Use cases are represented as the horizontally shaped ovals and display the different uses.

- Actors are the people that employ the use cases and are represented on the diagram as figures of persons.

Actors cannot be related each to other (except relations of generalization/inheritance).

- Associations are shown as lines between actors and use cases.

= Sys‘rem boundar'y - the box with the name and ovals (use cases) inside that sets a system scope to use
cases.

= Packages that allow you to add the elements in groups.

56

Use Case Diagrams

UML Use Case Diagram

<<includ >
System 0 TIEEET s Include Relationship
Use Case
<<extends>
B Extend Relationship
<L COMMmunicates=»
———————————————— = Communicates Relationship
Use Case 5et 2.0 CLSESE> R B
———————————————— e Uses Relationship
System Boundary
Actor - a role that < Generalization Relationship
an outsider takes on
when interacting Ador | Divider
with the business
system. ;
! Smart and line UML connectors
! Smat with different connedion types:
<<actor>> "_______—_________:
-Associgtion
Acor |
Name v -Compaosition
-Aggregation
Line -Inheritance
<<reguirement>> [-Dependency
-Synchronous Message
Note
Note/Comment [it Note connector
Frame, Fragment
Smart connector with different
Associaion connection types:
-Association
-Generalization
-Relationship
Interface
Communication Line
Association - an actor and Name
* Associaion * a business use case 1 Multiplicity: mandatory
: : Assodation Many-to-Many
ext ext
Padcage * Multiplicty: many {zero or more)
1 Associgion *
Association One-te-Many

text text

Actor - a role that an
outsider takes on when
interacting with the

business system.

Actor

Use Case Diagrams

Association - an Use Case -the interaction between
actor and a business an actor and a business system,
use case meaning it describes the functionality

of the business system

Association p Subject Business Include Relationship
System Boundary - Use Case

provides use case
containment behavior.

Include relationship - a
relationship between two
business use cases that
signifies that the business
use case on the side to
which the arrow points is
included in the use case on
the other side of the
arrow. (provides, another
functionality of the
business system)

Zﬂﬂﬁﬂf

58

Use Case Diagrams

Registered
Customer
Web
Customer
Mew
Customer

aSubsystems
Online Shopping

| wincludes

Make
Purchase

: wincludes

Checkout

gServices
Authentication

Identity
Provider

Client
Register

@ uml-diagrams.org

Credit
Payment
Service

PayPal

59

Sequence Diagrams

Sequence diagrams are part of the UML and are used
to model the interactions between the actors and the
objects within a system

A sequence diagram shows the sequence of
interactions that take place during a particular use
case or use case instance

The objects and actors involved are listed along the
top of the diagram, with a dotted line drawn vertically
from these

* Interactions between objects are indicated by
annotated arrows

60

Sequence Diagrams

Sequence diagr'ams describe interactions among classes in terms of an exchange
of messages over time.

Ay v d Y & do (Y] Y Ao W k4
uammiﬂ FUNUHFIZHNPVRNAMTISUINa Use CGSC Tﬂﬂumﬂmmnmmﬂ
Class roles d

Class roles describe the way an object will behave in context. Use the UML object symbol to
illustrate class roles, but don't list object attributes.

Ohject : Class %
&otor

Activation | | |
Activation boxes represent the time an object needs ' | |
to complete a task. |

NN\ /

Activations

Ohjedt : Class Ohjed : Class

61

Sequence Diagrams

Messages

Messages are arrows that represent communication between objects. Use half-arrowed
lines to represent asynchronous messages. Asynchronous messages are sent from an
object that will not wait for a response from the receiver before continuing its tasks.

£ Lifelines

Aotoy | Died: Class | | Object - Class Arrow Message type | | ifelines are vertical dashed lines that
! I I -~ Simple indicate the object's presence over time.
- — Synchronous % e (T e (T
Actor
—_— Azynchronous | | |
e
T | |] Balking | |
| | | D
Time out
Messages)

Lifelines
62

Sequence Diagrams

Destroying Objects Loops
Objects can be terminated early using an arrow A repetition or loop within a sequence diagram is
labeled "<< destroy »" that points to an X. depicted as a rectangle. Place the condition for

exiting the loop at the bottom left corner in
square brackets [].

X

Pu:|tu:ur uhim|: Llass EEI Object : Class | | Object : Class
| |
| | | I
I
| [condition to exii] |
I I
] I |
< =destroy== Loop

63

Sequence diagram for

View patient information

Medical Receptionist

% P: PatientIinfo D: Mentcare-DB AS: Authorization

| | |
Viewlinfo (PID) |

report (Info, PID,

|
uID) | |
P . |
authorize (Info,
uUID) |
authorization D
4_ _______
alt |
[authorization OK] Patient info |
R |
I R 4 - —+ -
[authorization fail] Error (no access) |
4_

64

Sequence Diagrams

s1:student I1:Library Ib:LibrarvDB

1 : login()

3 : success
4 : BookReguest()

: sel -
5i: SSISHBGO) seite | chisciBooidvalabilivg

2: validateDetails().

t1:Operation

v = checkavailability{) .
' - 5 : issueBoo :
: E KO o &
: I : =
9 : requestDet() 10 : requestDetails{s1) .
11 : enterDetails() E 12 : validateDetails(E 13 : validatDetails() . E
: — R D e e e e 2
: 14 : issueBook() <Lyeapaeess '
I:T_ 19g FaseRen 0 | | ... Al B »D

65

Activity Diagram

An ClCTiViTy diagr'am illustrates the dynamic nature of a system by modeling the flow of
control from activity to activity. An activity represents an operation on some class in the system
that results in a change in the state of the system. Typically, activity diagrams are used to model
workflow or business processes and internal operation. Because an activity diagram is a special
kind of state chart diagram, it uses some of the same modeling conventions.

o v v d d !
!!ﬁﬂﬁﬂ‘igﬂﬂuﬂ1‘§‘ﬂ1\31u‘i’l1ﬁf§’iﬁ‘i} ﬂ%uaﬂaﬂﬁauwummmjummaaunﬁnﬂ !ﬁmmm

aums lvavazdonssnvausiaz Use Case w3onanisyvasvagnaa

Action states

Action states represent the noninterruptible actions of objects. Activity ety
Action Flow
Action flow arrows illustrate the relationships among action states.

) Aot
Object Flow -

Object flow refers to the creation and modification of objects by

activities. An object flow arrow from an action to an object means that
the action creates or influences the object. An object flow arrow from
an object to an action indicates that the action state uses the object. |

Ohbject name : Class 66

Activity Diagram

Initial State
A filled circle followed by an arrow represents the initial action state. o —

Final State
An arrow pointing to a filled circle nested inside another circle represents the final %@)
action state. .)
Synchronization
A synchronization bar
helps illustrate parallel
transitions.
Synchronization is also
called forking and
Joining.

Branching

A diamond represents a
decision with alternate
paths. The outgoing
alternates should be
labeled with a condition
or guard expression. You
can also label one of the

paths "else."

T
Chiject : Class ------»

[condition]
<

[condition]

Swimlane 1 | Swimlane 2

Swimlanes
Swimlanes group related activities into one column.

Activity Diagram

login

start

vald user

vg

request to

no yes
libranian request for issue

68

Confirm

decision

detention

Process model of involuntary

Inform
patient of
rights

Record
detention
decision

detention

[not available]

Find secure
place

[dangerous]

Transfer to
[available] \ secure hospital

Admit to

Transfer to
police station

hospital

«system»
Mentcare

[not
dangerous] 1
«system»
Admissions
system

Inform
social care
Inform next

of kin

Update
register
A

«system»
Mentcare

69

Collaboration Diagram

A collaboration diagr'am or Communication Diagrams like UML sequence diagrams, are used
to explore the dynamic nature of your software. Collaboration diagrams show the message flow
between objects in an OO application, and also imply the basic associations (relationships)

between classes. , : .
a v [V < d T o W Y = Y
uammi‘lJ{]mJwuﬁ3zﬁ31a’0’0'umﬂﬂiﬂﬂ‘luuamummnmmmuﬂmﬁum

Class roles

Class roles describe how objects behave. Use the UML object << global==

symbol to illustrate class roles, but don't list object Association roles

attributes. .. : I .
Association roles describe how an association will
behave given a particular situation. You can draw

Ohject : Class association roles using simple lines labeled with

stereotypes.

Messages

Unlike sequence diagrams, collaboration diagrams do not have an

explicit way to denote time and instead number messages in order of 1.4 [condition]:

execution. Sequence numbering can become nested using the Dewey TIIESSAEE NAtE

decimal system. For example, nested messages under the first -
message are labeled 1.1, 1.2, 1.3, and so on. The a condition for a 1.4 * [loop expression]
message is usually placed in square brackets immediately following the message name
sequence humber. Use a * after the sequence number to indicate a -
loop.

70

Collaboration Diagram

MemberRecord

3 : validate member() T

l S : book can be issued()
4 : check no. of book issued() T

Librarian

\8‘: update book status()

7 : add member and book details()
\licheck availability of book()

2 : book availabh:()\
6 <<create>>

Transaction Book

71

State Diagram

A state diagr'am shows the behavior of classes in response to external stimuli. This
diagram models the dynamic flow of control from state to state within a system.

v Y < dd! d' Y a d' a d?
HaeNaDIUSAN 9 ﬂlﬂﬂ!!ﬂﬁz@’0ﬂ!%ﬂﬂ“lfx‘iﬂ”l%'i]%!‘ﬂﬁﬁluﬂﬂﬂﬂ‘mﬂﬂﬂﬁﬁuﬂ!ﬂﬂﬂluﬂluﬁzﬂﬂ

States

States represent situations during the life of an object. You can easily State
illustrate a state by using a rectangle with rounded corners.

Transition even acion

A solid arrow represents the path between different states of an /_\J
object. Label the transition with the event that triggered it and the

action that results from it. event £ action

—
Initial State
A filled circle followed by an arrow represents the object's initial . .
state.
Final State
An arrow pointing to a filled circle nested inside another circle %@

represents the object's final state.

72

State Diagram

Synchronization and Splitting of

Control

A short heavy bar with two fransitions entering it
represents a synchronization of control. A short heavy
bar with two transitions leaving it represents a splitting

of control that creates multiple states. synchronization splitting of control

Lift State Diagram

[Turn Off

/Turn On Want Up/Go Up Move Up

. = doffloar =floor +1
entryiox =1 | (hoor =max)stop

>1/Go
Do

Floor=1

Want Down | Go Down Desired Floor reached

Move Down |) Reach
Floor<>1 entry/stop
& Desired Floor

do/foor =floor-1
reached

(flocr =1)fstop

73

State Diagram of a microwave oven

Full
power Full power
—

do: set power
=600

/~ Waiting

.—> do: display

imer |
Number

Full / Settime

Operation

\ time
powver do: get number do: operate
exit: set time oven
Half
power
Half Door
power Timer closed Cancel
Start \
Door
open Door Waiti
/" Half power Enabled open aiing

do: set power
= 300

Door | do: display do: display
closed 'Ready’ time
Disabled @

do: display
'Waiting'

74

Microwave oven operation

-

fault

o

Operation

Time

Checking

[Cook \

do: check I
status

Turntable Emitter

fault

/ Alarm \

do: display
event

do: run
_ generator

Timeout

do: buzzer on
for 5 secs.

~

J

(Disabled)<—

Door open

(Waiting)%

Cancel

75

States and stimuli for the
microwave oven (a)

Waiting The oven is waiting for input. The display shows the current time.
Half power The oven power is set to 300 watts. The display shows ‘Half power’.
Full power The oven power is set to 600 watts. The display shows ‘Full power’.
Set time The cooking time is set to the user’s input value. The display shows

the cooking time selected and is updated as the time is set.

Disabled Oven operation is disabled for safety. Interior oven light is on.
Display shows ‘Not ready’.

Enabled Oven operation is enabled. Interior oven light is off. Display shows
‘Ready to cook’.

Operation Oven in operation. Interior oven light is on. Display shows the timer
countdown. On completion of cooking, the buzzer is sounded for five
seconds. Oven light is on. Display shows ‘Cooking complete’ while
buzzer is sounding.

76

States and stimuli for the
microwave oven (b)

Half power

Full power

Timer

Number
Door open
Door closed
Start

Cancel

The user has pressed the half-power button.

The user has pressed the full-power button.

The user has pressed one of the timer buttons.

The user has pressed a numeric key.
The oven door switch is not closed.
The oven door switch is closed.

The user has pressed the Start button.

The user has pressed the Cancel button.

77

References

TIan Sommerville, Software Engineering, 10th Edition
Pearson Education, Addison-Wesley, 2015.

Roger S. Pressman and Bruce R. Maxim. Software
Engineering a Practitioner’s Approach. Eighth Edition.
McGraw-Hill, 2014,

Ivan Marsic. Software Engineering. 2012,

John Satzinger, Robert Jackson and Stephen Burd.
Systems Analysis and Design in a Changing World.
Sixth Edition. Course Technology, 2012.

/8

	Slide Number 1
	System Modeling
	Existing and planned system models
	Software Modeling
	Software Development Process
	Software modeling and models
	System Model
	System perspectives
	Product Engineering Hierarchy
	Analysis Modeling
	The Analysis Model
	Analysis Modeling Approaches
	Types of Analysis Model
	Structural Analysis
	Data Flow Diagram : DFD
	1. Process
	2. Data Flow
	3. Data Store
	Data Flow Diagram : DFD
	Data Flow Diagram : DFD
	Context Diagram (DFD Level 0)
	DFD Level 1
	DFD Level 2 �(DFD Level 1 of Process 1)
	Entity Relationship Diagram (ERD)
	Entity Relationship Diagram (ERD)
	Entity Relationship Diagram (ERD)
	Entity Relationship Diagram (ERD)
	Object Oriented Analysis
	The Unified Modeling Language
	UML-Structural Diagram
	Class Diagrams
	Class Diagram
	Class Diagram
	Class Diagram - Relationship
	Class Diagram
	Class Diagram
	Class Diagram – �Relations between Classes
	Class Diagram – Association
	Class Diagram – Multiplicity
	Class Diagram – Aggregation
	Class Diagram – Composition
	Class Diagram – Inheritance/Generalization
	Class Diagram – Generalization
	Class Diagram – �Generalization and Specialization
	Class Diagram
	Object Diagram
	Object Diagram
	Object Diagram
	Component Diagram
	Component Diagram
	Deployment Diagram
	Deployment Diagram
	Deployment Diagram
	Deployment Diagram
	UML-Behavioral Diagram
	Use Case Diagrams
	Use Case Diagrams
	Use Case Diagrams
	Use Case Diagrams
	Sequence Diagrams
	Sequence Diagrams
	Sequence Diagrams
	Sequence Diagrams
	Sequence diagram for �View patient information
	Sequence Diagrams
	Activity Diagram
	Activity Diagram
	Activity Diagram
	Process model of involuntary detention
	Collaboration Diagram
	Collaboration Diagram
	State Diagram
	State Diagram
	State Diagram of a microwave oven
	Microwave oven operation
	States and stimuli for the microwave oven (a)
	States and stimuli for the microwave oven (b)
	References

