
Todsapon Banklongsi
Department of Computer Engineering

Bangkok University

System Modeling

System Modeling

• System modeling is the process of developing abstract
models of a system, with each model presenting a
different view or perspective of that system

• System modeling has now come to mean representing a
system using some kind of graphical notation, which is
now almost always based on notations in the Unified
Modeling Language (UML)

• System modeling helps the analyst to understand the
functionality of the system and models are used to
communicate with customers

2

Existing and planned system models

• Models of the existing system are used during requirements
engineering. They help clarify what the existing system
does and can be used as a basis for discussing its strengths
and weaknesses. These then lead to requirements for the
new system.

• Models of the new system are used during requirements
engineering to help explain the proposed requirements to
other system stakeholders. Engineers use these models to
discuss design proposals and to document the system for
implementation.

• In a model-driven engineering process, it is possible to
generate a complete or partial system implementation from
the system model.

3

Software Modeling

4

User

 Requirement
Modeling

(Analysis and Design)

Model
(Specification)

Tools Manually

Coding

Program

Modeling
- Analysis and Design
- Visual Modeling

Software Development Process

• Requirement Specification : define problem domain
• Analysis : what problem to be solved?
• Design : how to solve the problem?
• Implementation : how to implement the solution?
• Testing : how to ensure that the solution can solve the

problem?
• Maintenance : how to adjust the solution to accomodate

change?
• Retirement : when does the system to be retired?

5

Software modeling and models

• Software modeling helps the engineer to
understand the functionality of the system

• Models are used for communication among
stakeholders

• Different models present the system from
different perspectives
– External perspective showing the system’s context or

environment
– Process models showing the system development process

as well as activities supported by the system
– Behavioural perspective showing the behaviour of the

system
– Structural perspective showing the system or data

architecture
6

7 http://www.omgsysml.org/INCOSE-OMGSysML-Tutorial-Final-090901.pdf

System Model

System perspectives

• An external perspective, where you model the context
or environment of the system

• An interaction perspective, where you model the
interactions between a system and its environment, or
between the components of a system.

• A structural perspective, where you model the
organization of a system or the structure of the data
that is processed by the system

• A behavioral perspective, where you model the dynamic
behavior of the system and how it responds to events

8

9

Product Engineering Hierarchy

 Product Requirements Engineering

Hardware
Engineering

 Software
Engineering

 Database
Engineering

Construction

 Human
Engineering

Analysis
Modeling

 Function Data and
Classes Behavior

 Architectural
Design

Interface
Design

 Component
Design

 Data/Class
Design

Design
Modeling

System
Component
Engineering

Analysis Modeling

10

The Analysis Model is the first technical representation of a system.
Analysis modeling uses a combination of text and diagrams to represent
software requirements (data, function, and behavior) in an understandable
way.

Analysis
Model

System

Description

Design
Model

The Analysis Model

11

Analysis Modeling Approaches

12

Types of Analysis Model

13

1. Structural Analysis or
Non-UML System Modeling Methods

 Process Model (process-driven systems)
- Data Flow Diagram (DFD)
- Flowcharts
- Structure Charts
- Decision Table, Decision Tree

 Data Model (data-driven systems)
- Entity Relationship Diagram
 (ER Diagram)
- Data Dictionary
- Warneir Diagram

 Control-Oriented Methods (real-time
systems)

- State Transition Diagrams (STD)

2. Object Oriented Analysis or
UML System Modeling Methods

 Structural Diagram
- Class Diagram
- Object Diagram
- Component Diagram
- Deployment Diagram

 Behavioral Diagram
- Use Case Diagram
- Sequence Diagram
- Activity Diagram
- Collaboration Diagram
- State Diagram

Structural Analysis
• Structured analysis: the focus is only on process and procedures.

Modeling techniques used in it are DFD(Data Flow Diagram),
Flowcharts etc.

• Structuring system process requirements
– Data flow diagrams (DFD) - process modeling
– Context diagram
– Process decomposition (DFD levels): 4 types of DFD:

• Current physical: adequate detail only
• Current logical: enables analysts to understand current system
• New logical: technology independent, show data flows, structure, and

functional requirements of new system.
• New physical: technology dependent.

– Logical modeling: using structured English, decision table/tree
– Structuring system data requirements: using ER diagram

14

Data Flow Diagram : DFD

15

16

Data Flow Diagram : DFD

1. Process This might be a
physical location or
the staff
responsible.

17

Data Flow Diagram : DFD

2. Data Flow

18

a ‘D’ used to represent a
computer data
a ‘M’ used to represent manual
data stores

Data Flow Diagram : DFD

3. Data Store

Data Flow Diagram : DFD

19

External Entity

4. External Entity

Data Flow Diagram : DFD

20

Diagram Layering and Process Refinement

Context-level diagram
(DFD Level 0)

DFD Level 1 diagram

Process Specification

DFD Level 2 diagram

Context Diagram (DFD Level 0)

21

• Highest level view of the
system

• Contains ONLY one process,
i.e., the “system”

• It also shows all external
data sources/sinks

• (“electronic” or “manual”)
• And all data flows between

data sources/sinks and the
process

• It contains NO data stores

DFD Context Diagram - Example Food Ordering System

P

Food Ordering
System

Restaurant
Manager

KitchenCustomer

Reports

Food Order

Receipt

Customer Order

DFD Level 1

22

• Expands the main
process from
context diagram

• Represents the
system’s major
processes

• Which are the
primary individual
processes at the
highest possible
level

• This is called
“functional
decomposition”

DFD Level 1 Diagram - Food Ordering System

P4

Produce
Management

Reports

P3

Update
Inventory File

P2

Update Goods
Sold File

P1

Receive &
Transf Cust
Food Ord

Restaurant
Manager

Kitchen
Customer

D Goods Sold File D1 Inventory File

Management Reports

Formatted Inventory Data

Daily Inventory Depletion Amts

Daily Goods Sold Amounts

Formatted Goods Sold Data

Inventory Data
Goods Sold

Customer Order

Receipt

Food Order

Reports

DFD Level 2
(DFD Level 1 of Process 1)

23

DFD Level 2 Diagram (DFD Level 1 of P1)- Food Ordering System

P1.5

Generate
Inventory Decr

P1.4

Generate
Goods Sold

Incr

P1.3

Transform
Order to

Kitchen Fmt

P1.2

Generate
Customer
Receipt

P1.1

Receive
Customer Order

P3

Update
Inventory File

P2

Update Goods
Sold File

Kitchen

Customer

Receipt
Customer Order 4

Customer Order 2

Customer Order 5

Customer Order 3

Food Order

Customer Order 1

Inventory Data

Goods Sold

Entity Relationship Diagram (ERD)

• An entity-relationship diagram (ERD) is a graphical representation of an
information system that shows the relationship between people, objects,
places, concepts or events within that system. An ERD is a data modeling
technique that can help define business processes and can be used as the
foundation for a relational database.

24

Entity-Relationship Diagrams Database Structure Diagrams

Entity Relationship Diagram (ERD)

25

Entity Relationship Diagram (ERD)

26 http://www.conceptdraw.com/How-To-Guide/picture/Design_Elements(Chen-ERD).png

Strong entity คือเกิดข้ึนดว้ยตนเองไม่

ข้ึนกบั entity ใด เช่น นกัศึกษา หรือ อาจารย ์

หรือสินคา้ เป็นตน้

Weak entity คือข้ึนโดยอาศยั entity
อ่ืน เช่น เกรดเฉล่ีย ท่ีมาจากแฟ้มผลการเรียน หรือ

ส่ิงต่าง ๆ ท่ีผูใ้ชง้านฐานขอ้มูลจะตอ้งยุง่เก่ียวดว้ย

เช่น คน แผนก ประเภท การสัง่ซ้ือ

Entity Relationship Diagram (ERD)

27

1:1= one to one
1:N = one to many
N:M = many to many

Object Oriented Analysis
• In the system analysis or object-oriented analysis phase of

software development, the system requirements are determined,
the classes are identified and the relationships among classes are
identified

• A semiformal analysis technique for object-oriented paradigm
Structuring system process requirements

28

The Unified Modeling Language
• Devised by the developers of object-oriented analysis and design methods
• Has become an effective standard for software modelling

UML-Structural Diagram

30

• Class diagrams, which show the object classes in the system and the
associations between these classes.

• Object diagrams is a graph of instances, including objects and data
values. A static object diagram is an instance of a class diagram; it shows
a snapshot of the detailed state of a system at a point in time. The use
of object diagrams is fairly limited, namely to show examples of data
structure.

• Component diagrams illustrate the pieces of software, embedded
controllers, etc., that will make up a system. A component diagram has a
higher level of abstraction than a Class Diagram - usually a component is
implemented by one or more classes (or objects) at runtime. They are
building blocks so a component can eventually encompass a large portion
of a system.

• Deployment diagrams depicts a static view of the run-time configuration
of processing nodes and the components that run on those nodes. In
other words, deployment diagrams show the hardware for your system,
the software that is installed on that hardware, and the middleware used
to connect the disparate machines to one another.

Class Diagrams

• Class diagrams are used when developing an object-
oriented system model to show the classes in a system
and the associations between these classes

• An object class can be thought of as a general
definition of one kind of system object

• An association is a link between classes that indicates
that there is some relationship between these classes.

• When you are developing models during the early
stages of the software engineering process, objects
represent something in the real world, such as a
patient, a prescription, doctor, etc.

31

32

แสดงโครงสร้างหยุดน่ิงของระบบในลกัษณะความสัมพนัธ์ระหว่างคลาส

Class Diagram

Class Diagram

33

Visibility
Use visibility markers to signify who can access the information contained within a class. Private visibility hides
information from anything outside the class partition. Public visibility allows all other classes to view the marked
information. Protected visibility allows child classes to access information they inherited from a parent class.

Class Diagram - Relationship

1) Unary Relationship เป็นความสัมพนัธ์

ทีเ่กดิกบัคลาสเดยีว เช่น หัวหน้าห้องของนักศึกษาแต่ละคน

2) Binary Relationship เป็น

ความสัมพนัธ์ทีเ่กดิขึน้ระหว่างคลาส 2 คลาส เช่น

ความสัมพนัธ์ระหว่างคลาส “นักศึกษา” กบั คลาส “คณะ

วชิา” ซ่ึงสัมพนัธ์กนัโดยความสัมพนัธ์ “สังกดั”

3) Ternary Relationship เป็นความสัมพนัธ์ทีเ่กดิขึน้ระหว่างคลาสมากกว่า 2 คลาสขึน้ไป

34

Class Diagram

35

Class Diagram

http://creately.com/blog/diagrams/uml-diagram-types-examples/ 36

Class Diagram –
Relations between Classes

Association
Aggregation
Composition
Inheritance/Generalization

37

Class Diagram – Association

38

Class Diagram – Multiplicity

39

Class Diagram – Aggregation
• An aggregation model

shows how classes that
are collections are
composed of other classes

• Aggregation models are
similar to the part-of
relationship in semantic
data models

40

Class Diagram – Composition
Composition is a strong form of association in which the ‘part’ objects are
dependent on the ‘whole’ objects.

1. a ‘part’ object can only belong to one composite at a time,
2. when a composite object is destroyed, all its dependent part must be
destroyed at the same time .

41

Class Diagram –
Inheritance/Generalization

Generalization is an everyday
technique that we use to
manage complexity
Rather than learn the detailed
characteristics of every entity
that we experience, we place
these entities in more general
classes (animals, cars, houses,
etc.) and learn the
characteristics of these
classes
This allows us to infer that
different members of these
classes have some common
characteristics, e.g. squirrels
and rats are rodents

42

Class Diagram – Generalization
• In modeling systems, it is often useful to

examine the classes in a system to see if
there is scope for generalization. If
changes are proposed, then you do not
have to look at all classes in the system to
see if they are affected by the change.

• In object-oriented languages, such as
Java, generalization is implemented using
the class inheritance mechanisms built
into the language

• In a generalization, the attributes and
operations associated with higher-level
classes are also associated with the
lower-level classes

• The lower-level classes are sub-classes
that inherit the attributes and operations
from their super-classes. These lower-
level classes then add more specific
attributes and operations.

43

Class Diagram –
Generalization and Specialization

44

Class Diagram

45

Object Diagram
Object diagrams are also closely linked to class diagrams. Just as an object is an
instance of a class, an object diagram could be viewed as an instance of a class diagram.
Object diagrams describe the static structure of a system at a particular time and they
are used to test the accuracy of class diagrams.

Object names
Each object is represented as a rectangle, which contains
the name of the object and its class underlined and
separated by a colon.

Object attributes
As with classes, you can list object attributes in a
separate compartment. However, unlike classes, object
attributes must have values assigned to them.

แสดงโครงสร้างหยุดน่ิงของระบบในลกัษณะความสัมพนัธ์ระหว่างออบเจก็ต์

46

Object Diagram
Active object
Objects that control action flow are called active objects.
Illustrate these objects with a thicker border.

Multiplicity
You can illustrate multiple objects as one symbol if the
attributes of the individual objects are not important.

Links
Links are instances of associations. You can
draw a link using the lines used in class
diagrams.

Self-linked
Objects that fulfill more than one role can be self-
linked. For example, if Mark, an administrative
assistant, also fulfilled the role of a marketing
assistant, and the two positions are linked, Mark's
instance of the two classes will be self-linked.

47

Object Diagram

48

Component Diagram
A component diagram could represent
- Logical Components (e.g., business components, process components), and
- Physical Components (e.g., CORBA components, EJB components, COM+ and .NET components,
WSDL components, etc.),

Component
A component is a physical building block
of the system. It is represented as a
rectangle with tabs.

Interface
An interface describes a group
of operations used or created
by components.

Dependencies
Draw dependencies among
components using dashed
arrows.

Port
Ports are represented using a square
along the edge of the system or a
component. A port is often used to
help expose required and provided
interfaces of a component.

แสดงองค์ประกอบหรือไฟล์จริงของระบบ (เช่นไฟล์ exe และ dll)ที่ออกแบบและสถานที่เกบ็

49

Component Diagram

50

Deployment Diagram

Deployment diagrams depict the physical resources in a system
including nodes, components, and connections. (Hardware and Software)

Component
A node is a physical resource that executes code components.

Association
Association refers to a physical connection between nodes,
such as Ethernet.

Components and Nodes
Place components inside the node that deploys them.

แสดงการนําโปรแกรมที่พฒันาไปตดิตั้งในฮาร์ดแวร์ในระบบ

51

Deployment Diagram

http://www.conceptdraw.com/How-To-Guide/picture/Design-elements-UML-deployment-diagrams.png 52

Deployment Diagram

53

Deployment Diagram

http://www.uml-diagrams.org/deployment-diagrams-overview.html 54

UML-Behavioral Diagram
• Use case diagrams, which show the interactions between a system

and its environment
• Sequence diagrams, which show interactions between actors and

the system and between system components
• Activity diagrams, which show the activities involved in a process

or in data processing
• Collaboration Diagram or Communication Diagrams like UML

sequence diagrams, are used to explore the dynamic nature of
your software. Collaboration diagrams show the message flow
between objects in an OO application, and also imply the basic
associations (relationships) between classes.

• State diagrams, which show how the system reacts to internal and
external events

55

Use Case Diagrams
• Use Case Diagrams gives a graphic overview of the actors involved in a

system, different functions needed by those actors and how these
different functions are interacted.

• Use cases were developed originally to support requirements elicitation
and now are incorporated into the UML

• Each use case represents a discrete task that involves external
interaction with an actor

• Actors in a use case may be people or other systems

56

- Use cases are represented as the horizontally shaped ovals and display the different uses.
- Actors are the people that employ the use cases and are represented on the diagram as figures of persons.
Actors cannot be related each to other (except relations of generalization/inheritance).
- Associations are shown as lines between actors and use cases.
- System boundary – the box with the name and ovals (use cases) inside that sets a system scope to use
cases.
- Packages that allow you to add the elements in groups.

ปฏิสัมพนัธ์ระหว่างผู้ใช้ภายนอกและฟังก์ชันการทํางานหลกัภายในระบบ

Use Case Diagrams

57

Actor - a role that
an outsider takes on
when interacting
with the business
system.

Association - an actor and
a business use case

57

Use Case Diagrams

58

Actor - a role that an
outsider takes on when
interacting with the
business system.

Association - an
actor and a business
use case

Use Case -the interaction between
an actor and a business system,
meaning it describes the functionality
of the business system

Include relationship - a
relationship between two
business use cases that
signifies that the business
use case on the side to
which the arrow points is
included in the use case on
the other side of the
arrow. (provides, another
functionality of the
business system)

System Boundary -
provides use case
containment behavior.

Use Case Diagrams

59

Sequence Diagrams

• Sequence diagrams are part of the UML and are used
to model the interactions between the actors and the
objects within a system

• A sequence diagram shows the sequence of
interactions that take place during a particular use
case or use case instance

• The objects and actors involved are listed along the
top of the diagram, with a dotted line drawn vertically
from these

• Interactions between objects are indicated by
annotated arrows

60

Sequence Diagrams

61

Sequence diagrams describe interactions among classes in terms of an exchange
of messages over time.

Class roles
Class roles describe the way an object will behave in context. Use the UML object symbol to
illustrate class roles, but don't list object attributes.

Activation
Activation boxes represent the time an object needs
to complete a task.

แสดงการปฏิสัมพนัธ์ระหว่างออบเจก็ต์สําหรับแต่ละ Use Case โดยมีลาํดบัของเวลาด้วย

Messages
Messages are arrows that represent communication between objects. Use half-arrowed
lines to represent asynchronous messages. Asynchronous messages are sent from an
object that will not wait for a response from the receiver before continuing its tasks.

Lifelines
Lifelines are vertical dashed lines that
indicate the object's presence over time.

Sequence Diagrams

62

Destroying Objects
Objects can be terminated early using an arrow
labeled "<< destroy >>" that points to an X.

Loops
A repetition or loop within a sequence diagram is
depicted as a rectangle. Place the condition for
exiting the loop at the bottom left corner in
square brackets [].

Sequence Diagrams

63

Sequence diagram for
View patient information

64

Sequence Diagrams

65

An activity diagram illustrates the dynamic nature of a system by modeling the flow of
control from activity to activity. An activity represents an operation on some class in the system
that results in a change in the state of the system. Typically, activity diagrams are used to model
workflow or business processes and internal operation. Because an activity diagram is a special
kind of state chart diagram, it uses some of the same modeling conventions.

Action states
Action states represent the noninterruptible actions of objects.

Action Flow
Action flow arrows illustrate the relationships among action states.

Object Flow
Object flow refers to the creation and modification of objects by
activities. An object flow arrow from an action to an object means that
the action creates or influences the object. An object flow arrow from
an object to an action indicates that the action state uses the object.

Activity Diagram

แสดงกระบวนการทํางานทางธุรกจิ หรือแสดงปฏิสัมพนัธ์ของกลุ่มของออบเจก็ต์ เพือ่แสดง

ลาํดบัการไหลและกจิกรรมของแต่ละ Use Case หรือกจิกรรมของหลายคลาส

66

Initial State
A filled circle followed by an arrow represents the initial action state.

Final State
An arrow pointing to a filled circle nested inside another circle represents the final
action state.

Branching
A diamond represents a
decision with alternate
paths. The outgoing
alternates should be
labeled with a condition
or guard expression. You
can also label one of the
paths "else."

Synchronization
A synchronization bar
helps illustrate parallel
transitions.
Synchronization is also
called forking and
joining.

Swimlanes
Swimlanes group related activities into one column.

Activity Diagram

67

Activity Diagram

68

Process model of involuntary
detention

69

Collaboration Diagram
A collaboration diagram or Communication Diagrams like UML sequence diagrams, are used
to explore the dynamic nature of your software. Collaboration diagrams show the message flow
between objects in an OO application, and also imply the basic associations (relationships)
between classes.

Class roles
Class roles describe how objects behave. Use the UML object
symbol to illustrate class roles, but don't list object
attributes. Association roles

Association roles describe how an association will
behave given a particular situation. You can draw
association roles using simple lines labeled with
stereotypes.

Messages
Unlike sequence diagrams, collaboration diagrams do not have an
explicit way to denote time and instead number messages in order of
execution. Sequence numbering can become nested using the Dewey
decimal system. For example, nested messages under the first
message are labeled 1.1, 1.2, 1.3, and so on. The a condition for a
message is usually placed in square brackets immediately following the
sequence number. Use a * after the sequence number to indicate a
loop.

แสดงการปฏิสัมพนัธ์ระหว่างออบเจก็ต์โดยไม่มีลาํดบัของเวลาเข้ามาเกีย่วข้อง

70

Collaboration Diagram

71

State Diagram
A state diagram shows the behavior of classes in response to external stimuli. This
diagram models the dynamic flow of control from state to state within a system.

States
States represent situations during the life of an object. You can easily
illustrate a state by using a rectangle with rounded corners.

Transition
A solid arrow represents the path between different states of an
object. Label the transition with the event that triggered it and the
action that results from it.

Initial State
A filled circle followed by an arrow represents the object's initial
state.
Final State
An arrow pointing to a filled circle nested inside another circle
represents the object's final state.

แสดงสถานะต่าง ๆ ของแต่ละออบเจก็ต์ซ่ึงอาจจะเปลีย่นค่าไปตามกจิกรรมที่เกดิขึน้ในระบบ

72

Synchronization and Splitting of
Control
A short heavy bar with two transitions entering it
represents a synchronization of control. A short heavy
bar with two transitions leaving it represents a splitting
of control that creates multiple states.

 Lift State Diagram

State Diagram

73

State Diagram of a microwave oven

74

Microwave oven operation

75

States and stimuli for the
microwave oven (a)

76

State Description
Waiting The oven is waiting for input. The display shows the current time.

Half power The oven power is set to 300 watts. The display shows ‘Half power’.

Full power The oven power is set to 600 watts. The display shows ‘Full power’.

Set time The cooking time is set to the user’s input value. The display shows
the cooking time selected and is updated as the time is set.

Disabled Oven operation is disabled for safety. Interior oven light is on.
Display shows ‘Not ready’.

Enabled Oven operation is enabled. Interior oven light is off. Display shows
‘Ready to cook’.

Operation Oven in operation. Interior oven light is on. Display shows the timer
countdown. On completion of cooking, the buzzer is sounded for five
seconds. Oven light is on. Display shows ‘Cooking complete’ while
buzzer is sounding.

States and stimuli for the
microwave oven (b)

77

Stimulus Description
Half power The user has pressed the half-power button.

Full power The user has pressed the full-power button.

Timer The user has pressed one of the timer buttons.

Number The user has pressed a numeric key.

Door open The oven door switch is not closed.

Door closed The oven door switch is closed.

Start The user has pressed the Start button.

Cancel The user has pressed the Cancel button.

References

78

- Ian Sommerville, Software Engineering, 10th Edition
Pearson Education, Addison-Wesley, 2015.

- Roger S. Pressman and Bruce R. Maxim. Software
Engineering a Practitioner’s Approach. Eighth Edition.
McGraw-Hill, 2014.

- Ivan Marsic. Software Engineering. 2012.
- John Satzinger, Robert Jackson and Stephen Burd.

Systems Analysis and Design in a Changing World.
Sixth Edition. Course Technology, 2012.

	Slide Number 1
	System Modeling
	Existing and planned system models
	Software Modeling
	Software Development Process
	Software modeling and models
	System Model
	System perspectives
	Product Engineering Hierarchy
	Analysis Modeling
	The Analysis Model
	Analysis Modeling Approaches
	Types of Analysis Model
	Structural Analysis
	Data Flow Diagram : DFD
	1. Process
	2. Data Flow
	3. Data Store
	Data Flow Diagram : DFD
	Data Flow Diagram : DFD
	Context Diagram (DFD Level 0)
	DFD Level 1
	DFD Level 2 �(DFD Level 1 of Process 1)
	Entity Relationship Diagram (ERD)
	Entity Relationship Diagram (ERD)
	Entity Relationship Diagram (ERD)
	Entity Relationship Diagram (ERD)
	Object Oriented Analysis
	The Unified Modeling Language
	UML-Structural Diagram
	Class Diagrams
	Class Diagram
	Class Diagram
	Class Diagram - Relationship
	Class Diagram
	Class Diagram
	Class Diagram – �Relations between Classes
	Class Diagram – Association
	Class Diagram – Multiplicity
	Class Diagram – Aggregation
	Class Diagram – Composition
	Class Diagram – Inheritance/Generalization
	Class Diagram – Generalization
	Class Diagram – �Generalization and Specialization
	Class Diagram
	Object Diagram
	Object Diagram
	Object Diagram
	Component Diagram
	Component Diagram
	Deployment Diagram
	Deployment Diagram
	Deployment Diagram
	Deployment Diagram
	UML-Behavioral Diagram
	Use Case Diagrams
	Use Case Diagrams
	Use Case Diagrams
	Use Case Diagrams
	Sequence Diagrams
	Sequence Diagrams
	Sequence Diagrams
	Sequence Diagrams
	Sequence diagram for �View patient information
	Sequence Diagrams
	Activity Diagram
	Activity Diagram
	Activity Diagram
	Process model of involuntary detention
	Collaboration Diagram
	Collaboration Diagram
	State Diagram
	State Diagram
	State Diagram of a microwave oven
	Microwave oven operation
	States and stimuli for the microwave oven (a)
	States and stimuli for the microwave oven (b)
	References

